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Within the framework of a generalized theory of heat conduction, the characteristic equation for glass-rein-
forced plastics has been obtained. Formulas for determination of the velocities of propagation of a thermal
wave as functions of the slope of the normal to the characteristic surface and the angle of orientation of
glass-fiber threads have been derived. The curves of inverse velocities and radial velocities have been con-
structed.

Composite materials formed by a combination of reinforcing elements (in the form of thin fibers or threads)
and an isotropic binder are widely used in various fields of technology at present. The corrosion resistance and the
electrotechnical and thermomechanical properties enable one to use glass-reinforced plastics under different conditions,
including the case of exposure to laser radiation. Study of dynamic processes under such conditions requires that the
finite velocity of propagation of heat be taken into account in connection with the very rapid character of heat release.
Despite the fact that the time of relaxation of the heat flux is short (D10−11 sec), the velocity of propagation of ther-
mal disturbances is a value of the order of 103 m/sec and can prove comparable to the velocity of movement of the
heat source [1].

Let us consider an oriented single-layer glass-reinforced plastic in the plane x10x2 (under plane deformation)
produced by winding of the thread at an angle ϕ to the x1 axis. Since the thermal and other mechanical properties of
glass-reinforced plastics substantially depend on the orientation of glass-fiber threads (angle ϕ [2]), the corresponding
system of equations of motion will be written in the following form (the internal heat sources are absent):

c1 (ϕ) ∂1
2
u1 + 2c3 (ϕ) ∂1∂2u1 + c5 (ϕ) ∂2

2
u1 + c3 (ϕ) ∂1

2
u2 +

+ (c2 (ϕ) c5 (ϕ)) ∂1∂2u2 + c4 (ϕ) ∂2
2
u2 = ρu

..
1 + β11 (ϕ) ∂1T + β12 (ϕ) ∂2T ,

c3 (ϕ) ∂1
2
u1 + (c2 (ϕ) + c5 (ϕ)) ∂1∂2u1 + c4 (ϕ) ∂2

2
u1 + c6 (ϕ) ∂2

2
u2 +

+ 2c4 (ϕ) ∂1∂2u2 + c5 (ϕ) ∂1
2
u2 = ρu

..
2 + β21 (ϕ) ∂1T + β22 (ϕ) ∂2T ,

λ11 (ϕ) ∂1
2
T + 2λ12 (ϕ) ∂1∂2T + λ22 (ϕ) ∂2

2
T − C (T

.
 + τT

..
) =

= T0 (β11 (ϕ) (∂1u
.
1 + τ∂1u

..
1) + β12 (ϕ) (∂1u

.
2 + ∂2u

.
1 + τ (∂1u

..
2 + ∂2u

..
1)) + β22 (ϕ) (∂2u

.
2 + τ∂2u

..
2) ,

∂i = ∂ ⁄ ∂xi ,     i = 1, 2 .

(1)

We prescribe the initial data for system (1) on the surface Z(t, x1, x2) = 0 and pass to the new variables Z =
Z(t, x1, x2) and Z1,2 = Z1,2(t, x1, x2) [3]. After the standard procedure we obtain the equation of weak discontinuity of
system (1)
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where pi = ∂Z ⁄ ∂xi and p0 = ∂Z ⁄ ∂t.
Equation (2) describes the propagation of quasitransverse and quasilongitudinal elastic waves and of a thermal

wave. Further reasoning will be given only for the thermal wave, since data on the velocity of its propagation can be
applied to calculation of the relaxation time of thermal disturbances analogously, for example, to [4].

For the velocity V = −p0
 ⁄ g of propagation of the thermal wave directed along the normal to the wave front,

from (2) we obtain
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where cos α = p1
 ⁄ g is the direction cosine of the normal to the weak-discontinuity surface and sin α = p2
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From (3) we find the dimensionless velocity of propagation of the thermal wave
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The thermal-conductivity coefficients λij(ϕ) can be expressed in any revolved system by two basic thermal-conductivity
constants — λ11 and λ22 — from the formulas [2]
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Figure 2 gives the dimensionless curves of the ends of the refraction vectors r = 1/v for different angles of
winding of the glass thread ϕ and ratios between the basic coefficients of thermal conductivity; the dimensionless pa-
rameter n∗  is taken to be 0.1 (the characteristic frequency is of the order of 1011–1012 1/sec [5]). It is clear from the
figure that the velocity of propagation of the thermal wave exceeds the velocity of propagation of the longitudinal
elastic wave c1 for both λ22

 ⁄ λ11 < 1 and λ22
 ⁄ λ11 > 1. Change in the angle of winding of the glass thread ϕ substan-

tially influences the orientation of the r curve: for example, if ϕ changes by the angle ∆ϕ from zero to π/2 for
λ22

 ⁄ λ11 < 1, the r curve is rotated by the same, in practice, angle from the x1 axis clockwise.

Fig. 1. Dimensionless curves of the ends of the vectors of refraction r = 1/v of
the thermal wave for λ22

 ⁄ λ11 = 0.5 (a) and λ22
 ⁄ λ11 = 1.5 (b): 1) ϕ = π/4; 2)

π/2.
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Let us find the radial velocity of propagation of the thermal wave
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We express p0 from Eq. (3) and find partial derivatives with respect to p1 and p2. Taking into account that
p1 = g cos α and p2 = g sin α, we have
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Having substituted expressions (5) into (4), we obtain the dimensionless radial velocity p = P/c1 of propaga-
tion of the thermal wave as a function of the slope of the normal of the characteristic surface. Figure 2 shows the
curves of dimensionless radial velocities for different angles of winding of the glass thread ϕ and for λ22

 ⁄ λ11 = 0.5,
and n∗  = 0.1.

The dependence of the dimensionless radial velocity p on the slope α of the normal to the characteristic sur-
face is more pronounced than the dependence of v on α (see Fig. 1a and Fig. 2). A comparative analysis of the values
of the velocities P and V for the same values of the angle of winding of the glass thread shows that the radial veloc-
ity only slightly exceeds the velocity of propagation of the thermal wave along the normal to the characteristic surface.
Thus, the largest deviation of the velocities, for example, when λ22

 ⁄ λ11 = 0.5, is observed for angles α multiple to
π/4 and amounts to C6%.

We note that the curves of dimensionless radial velocities presented in Fig. 2 enable one to determine the ra-
dial velocity as a function of the slope of the normal to the characteristic surface but they are not the wave fronts of
the thermal wave in the coordinate plane x3 = 0. To construct the thermal-wave front we find the expressions for the
coordinates (x1, x2) of points of the medium which have been approached by the wave-disturbance energy by the in-
stant t. We take into account the following equalities [3]:

Fig. 2. Curves of dimensionless radial velocities p = P/1: 1) ϕ = π/4; 2) π/2.

Fig. 3. Thermal-wave fronts in the coordinate plane x3 = 0: 1) ϕ = π/4; 2) π/2.
The values plotted on the x1 and x2 axes are measured in meters.
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dxi
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The right-hand side of (6) is independent of time; therefore, integrating (6) under the assumption that the disturbance
source is in the origin of coordinates, we obtain

xi = 
∂p0

∂pi
 t . (7)

Expressions (7) enable us to determine the coordinates of a point of the thermal-wave front as quantities
which are in proportion to the velocity of propagation of the longitudinal elastic waves, i.e., to find the absolute values
of the coordinates x1 and x2 at the instant t we must multiply them by the velocity c1. Figure 3 shows the thermal-
wave fronts for different angles of winding of the glass thread ϕ (λ22

 ⁄ λ11 = 0.5 and n∗  = 0.1).
In closing, we note that in a more accurate formulation of the problem on wave motions in an oriented glass-

reinforced plastic, one must take into account different values of the relaxation times of thermal disturbances, which
correspond to the main directions of heat conduction of the glass-reinforced plastic.

NOTATION

C, specific heat at constant deformation; c1, velocity of propagation of the longitudinal elastic wave; ck(ϕ),
elastic constants; n∗  = τω∗ , characteristic number of vibrations over the period of relaxation of the heat flux; T, abso-
lute temperature; u = (u1, u2), displacement vector; v = V/c1, dimensionless velocity of propagation of the discontinuity
surface; α, slope of the normal to the weak-discontinuity surface; βij(ϕ), thermomechanical constants; ϕ, angle of
winding of the glass thread; λ11 and λ22, basic thermal-conductivity constants; λij(ϕ), thermal-conductivity coefficients;
τ, relaxation time of thermal disturbances; ω∗  = c1

2C ⁄ λ11, characteristic quantity having the dimension of frequency.
Subscripts: i, j = 1 and 2; k = 1, 5

___
; point, differentiation with respect to time.
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